CIB 565: Essentials of Biophysics

Rutgers University - Camden

Instructor: Dr. Eric Klein, JHSC 215B

Email: eric.a.klein@rutgers.edu

Hours and Location: Classes will be held online on Wednesday evenings from 6:00 - 8:50.

Zoom link: https://rutgers.zoom.us/j/95387486313?pwd=ZzF3bnhGMzhqSzBzOUZ4VWhHYINaZz09

Text: No text is required, but for further reading I would recommend: Physics of the Life Sciences by Jay Newman. I will post recorded lectures for a review of basic physics to prepare you to read the papers for class discussion. Lectures can be watched any time before class and the links are on the Sakai site.

Learning Objectives: Students will

- a) Become comfortable with physics concepts fundamental to classical biophysics, including the ability to use such concepts in basic problems
- b) Develop familiarity with how such concepts are used and understood in biophysics research
- c) Develop appreciation for the number of systems and problems that have been addressed using biophysical methods
- d) Improve ability to effectively read for and/or present the "big picture" of a research manuscript.

Academic Integrity. Each student in this course is expected to abide by the University Code of Academic Integrity. Any work submitted by a student in this course for academic credit will be the student's own work. Please see the academic integrity policy at

https://fas.camden.rutgers.edu/faculty/facultyresources/academic-integrity-policy/

Homework:

For each week's paper, submit two questions by Wednesday at noon to the Sakai site (in the forums section) to stimulate discussion.

There will be 2 problems sets due on the following dates:

Wednesday, October 21, 6:00 PM Wednesday, December 9, 6:00 PM

News and Views: Each student will prepare a 5-minute presentation (twice per semester) based on a News and Views item from *Science, Nature, Biophysical Journal*, etc.

Grading:

Participation: 33% (Includes the submission of paper questions as well as in class participation)

News and Views: 33% Homework: 33%

Class	Theme	Physics Concepts	Math Review
1 (9/2)	Description of a single	Displacement; velocity;	
	particle	acceleration	
2 (9/9)	Fluid Flow	Reynold's number;	Derivatives
		viscosity; surface	
		tension	
	Chemotaxis in <i>E. coli</i> an	alyzed by 3-dimensional trac	cking
3 (9/16)	Diffusion	Random walk; Brownian	
		motion	distributions
	Resistance to Blood Flow in Microvessels in vivo		
4 (9/23)	Mechanics	Kinetic/potential	Trigonometry
		energy; work; force	8
	Protein mobility in the		
5 (9/30)	Particle interactions	Force; momentum;	Vectors
		interaction potential	
	The hydrodynamics of water strider locomotion		
6 (10/7)	Elasticity	Springs; compressibility;	
0 (10/7)	Liasticity	oscillations	
	Fire ants self-assemble	into waterproof rafts to surv	vive floods
7 (10/14) 8 (10/21)	Molecular dynamics Systems of particles		
	Elastic behavior of crosslinked and bundles actin networks		
	Mechanism of shape determination in motile cells		
	Electrostatics	Coulomb potential;	
8 (10/21)	Liectiostatics	dipole-dipole	
		interactions	
	How fast-folding proteins fold		
	How membrane chain-melting phase-transition temperature is affected by		
	the lipid chain asymmetry and degree of unsaturation		
10/20		try and degree of unsaturation	JII
10/28	No Class	ezar	
9 (11/4)	Surface forces	Friction; adhesion	
	Counterion atmosphere and hydration patterns near a nucleosome core		
	particle		
	Intracellular anions as the voltage sensor of prestin, the outer hair cell motor		
	protein		
10 (11/11)	Rotation Angular kinematics and		
	momentum; torque		
	Adhesive force of a single gecko foot-hair		
	Strike forces of the peacock mantis shrimp		
	High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-		
	ATPase		
	The stall torque of the bacterial flagellar motor		
11/25	Thanksgiving- No Class		
12 (12/2)	Statistical Mechanics and molecular crowding		
	Molecular crowding limits translation and cell growth		
13 (12/9)	Bridging experimental a	and computational approach	es